Wolframheterocyclen mit Phosphor, Schwefel und Stickstoff als Ringbausteine

Herbert W. Roesky*, Michael Zimmer und Mathias Nolæmeyer

Institut für Anorganische Chemie der Universität Göttingen, Tammannstraße 4, D-3400 Göttingen

Eingegangen am 2. August 1988

Keywords: Silicon - nitrogen cleavage / Tungsten heterocycles containing N, P, and S

Heterocycles Containing Tungsten, Phosphorus, Sulphur, and Nitrogen in the Ring Skeleton

The new ligand Me₂S(NPPh₂NSiMe₃)₂ (2), prepared from Me₂S-(NPPh₂)₂ (1) and Me₃SiN₃, reacts with WF₆ and WCl₆ to form the heterocycles Me₂S(NPPh₂N)₂WF₄ (3a) and Me₂S-(NPPh₂N)₂WCl₄ (3b). The X-ray single-crystal structure analysis exhibits a puckered eight-membered ring with alternating short and long bond lengths. 3a crystallizes with one molecule of dimethylformamide in the space group Cc with a = 1247.3(6), b = 1728.5(9), c = 1543.1(8) pm and $\beta = 102.41(3)^{\circ}$.

Seit einigen Jahren beschäftigen wir uns mit dem Problem, in gut bekannte sechs- und achtgliedrige ungesättigte anorganische Ringverbindungen einzelne Heteroatome durch Übergangsmetalle zu substituieren. Dabei liegen die Metalle in ihren höchsten formalen Oxidationsstufen vor. 1983 berichteten wir erstmals über Synthese und Struktur eines Metalladithiatriazins¹⁾ der allgemeinen Zusammensetzung MS₂N₃. Erfolgreich war der Einbau der Übergangsmetalle Vanadium, Molybdän und Wolfram in das Gerüst aus Schwefel- und Stickstoffatomen²⁾. Ebenso lassen sich Übergangsmetalle in Cyclophosphazene einbauen. 1986 gelang die Synthese des ersten Metallaphosphazens (MP₂N₃)³⁾. Danach haben wir Synthese und Strukturen der entsprechenden V-, Nb-, Mo-, W- und Re-Verbindungen mitgeteilt⁴⁾. 1988 berichteten wir dann über die Synthese des ersten Tritantalatriazins oder des Triazatritantalabenzols der Zusammensetzung $[Cp^*Ta(Cl)N]_3 (Cp^* = C_5Me_5)^{5}$. Achtgliedrige ungesättigte Metallacyclen sind wesentlich seltener, bisher sind die Gerüste $TiS_3N_4^{60}$ und $V_2P_2N_4^{70}$ hergestellt worden.

Ergebnisse und Diskussion

Es ist uns jetzt gelungen, in einem achtgliedrigen Phosphazenring formal zwei Phosphoratome gegen Schwefel und Wolfram zu ersetzen. Dazu wählten wir als Ausgangsverbindung N,N'-Bis(diphenylphosphino)-S,S'-dimethylsulfodiimid (1)⁸⁾. Dieses reagiert mit Trimethylsilylazid in Xylol zu 2, aus dem sich mit WF₆ oder WCl₆ unter Halogensilan-Abspaltung die Wolframheterocyclen 3 bilden.

3a ist ein blaßgelber, luftstabiler Feststoff. Zwei Tripletts im ¹⁹F-NMR-Spektrum ($\delta = -0.9, -26.5, {}^{2}J_{FF} = 20.5$ Hz) weisen auf cis-Substitution am Wolfram hin und machen einen Ringschluß plausibel (¹⁸³W-Satelliten, ¹ $J_{19F,183W} = 48$ Hz). Die Einkristall-Röntgenstrukturanalyse belegt die Struktur **3a** (Abb. 1). Man erkennt das Vorliegen eines gewellten achtgliedrigen Ringes.

Abb. 1. Molekül von **3a** im Kristall mit der Numerierung der Atome

Die W – N-Abstände [W – N 175.6(13) und W – N' 183.3(4) pm] zeigen, verglichen mit dem acyclischen Bisnitrenkomplex⁹ (Ph-SO₂N)₂WCl₂·2CH₃CN (177.6 pm), deutliche Doppelbindungsanteile. Dies geht auch aus den Winkeln P - N - W und P' - N' - Wvon 154.9(9) und 158.5(7) hervor. Auffallend ist, daß der größere N'-Winkel im Vergleich zu dem an N nicht den kürzeren W-N'-Abstand zur Folge hat. Man beobachtet vielmehr über das gesamte Ringgerüst die Abfolge kurz-lang in den Bindungslängen. Dies wird besonders deutlich in den sehr unterschiedlichen P-N- und P' - N'-Abständen [P-N 165.9(14), P'-N' 155.4(10) pm]. Den trans-Einfluß des Liganden erkennt man an den unterschiedlichen W-F-Bindungslängen [W-F1 189.4(9), W-F1' 190.0(9) und W-F2 196.6(8), W-F2' 193.4(11) pm]. Für 3b nehmen wir einen entsprechenden strukturellen Aufbau an. Das ³¹P-NMR-Spektrum yon **3b** zeigt ein Singulett bei $\delta = 23.3$ (Wolframsatelliten $J_{31P,183W} = 86$ Hz). Vergleichsweise wird im entsprechenden Spektrum von 3a ein Multiplett ($\delta = 18.8$) mit Wolframsatelliten $({}^{2}J_{31P,183W} = 99.6 \text{ Hz})$ beobachtet.

Wir danken der Deutschen Forschungsgemeinschaft, der Stiftung Volkswagenwerk und dem Fonds der Chemischen Industrie für die großzügige Unterstützung.

Experimenteller Teil

Alle Arbeiten wurden unter N₂-Schutz und in getrockneten Lösungsmitteln durchgeführt. – NMR: Bruker AP 250 und WP 80 SY. – MS: Finnigan MAT 8230. – IR: Perkin-Elmer 180 und 325. – Elementaranalysen: Analytisches Labor des Institutes für Anorganische Chemie der Universität Göttingen.

Tab. 1.	Kristalldaten,	Intensitätsmessungen,	Verfeinerung	voi
		$3a (CH_3) NCHO$	-	

Formel : $C_{26}H_{26}F_4N_4P_2SW$ (CH₃)₂NCHO, Molmasse : 821.48 , Raumgruppe Cc , a = 1247.3(6) , b = 1728.5(9) , C = 1543.1(8)pm , β = 102.41(3) , V = 3.2491 nm³ , Z = 4 , ρ = 1.679 Mgm⁻³ , Absorptionskoeffizient $\mu_{MO} - K_{\alpha}$ = 3.8 mm⁻¹ , profiloptimierendes STOE-Vierkreisdiffraktometer Mo - K_{\alpha} , T = 20° C , Kristallgröße : 0.8x0.6x0.5 mm³ , Absorptionskorrektur durch azimuthale Abtastung, Reflexe bis 2 Θ = 45° gemessen: 2579 , Symmetrieunabhängig : 2414 , Verfeinert : 2384 mit Signifikanzgrenze 1F₀ 1 > 3 d (1F₀ 1), Verfeinerte Parameter :361 (SHELX), R = 0.038 , wR = 0.046 , Wichtungsschema w = 1 / [d² (1F₀) + 0,0004 |F₀|²], Restelektronendichte \pm 1.8 e / A^3

Tab. 2. Atomkoordinaten (× 10⁴) und äquivalente isotrope thermische Parameter (pm²·10⁻¹) von $3a \cdot (CH_3)_2NCHO$ (äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} -Tensors)

	x	У	Z	U(eq)
W	-3053	2002(1)	-8092	31(1)
F(1)	-3311(7)	955 (5)	-8436(6)	67 (4)
F(1')	-2615 (8)	2923 (5)	-7437(6)	62 (3)
F(2)	-1685(6)	1585(6)	-7365(5)	61(3)
F(2')	-3631(8)	1746(8)	-7061(6)	70(4)
ท่่	-2369 (9)	2245(8)	-8937(8)	41(4)
Р	-2095(3)	2796(2)	-9744(2)	34(1)
N(1)	-3024(8)	3422(7)	-10164(7)	37(4)
s	-4192(3)	3270(2)	-10736(2)	32(1)
P'	-5288(3)	2727(2)	-9418(2)	32(1)
N '	-4402(7)	2358(7)	-8669(7)	34(4)
N(1')	-4981(9)	2718(6)	-10399(7)	37(4)
C(11')	-6539(10)	2160(9)	-9568(10)	35(5)
C(12')	-7302(12)	2235(12)	-10359(10)	52(6)
C(13')	-8242(14)	1797(13)	-10483(12)	69(7)
C(14')	-8445(12)	1337(13)	-9823(13)	77(7)
C(15')	-7706(13)	1288(11)	-9029(12)	69(7)
C(16')	-6715(13)	1694(11)	-8890(11)	54(6)
C(21')	-5529(10)	3702(9)	-9106(9)	40(5)
C(22')	-4679(12)	4100(8)	-8558(10)	46(5)
C(23')	-4830(14)	4871(9)	-8367(10)	56(6)
C(24')	-5838(16)	5230(10)	-8680(13)	72(7)
C(25')	-6684(14)	4821(10)	-9208(12)	64(6)
C(26')	-6541(11)	4056(9)	-9411(10)	47(5)
с	-4168(14)	2902(11)	-11811(12)	51(7)
c'	-4722(11)	4208(9)	-10973(10)	50(5)
C(11)	-924(10)	3389(10)	-9314(10)	45(5)
C(12)	75(19)	3024(10)	-9017(15)	54(8)
C(13)	999(12)	3467(12)	-8611(12)	64(7)
C(14)	898(12)	4244(10)	-8561(12)	62(6)
C(15)	-63(14)	4602(11)	-8868(14)	80(8)
C(16)	-1016(12)	4156(11)	-9256(12)	62(6)
C(21)	-1784(11)	2156(9)	-10583(9)	38(4)
C(22)	-2189(12)	1411(9)	-10641(9)	50(5)
C(23)	-1969(13)	932(10)	-11303(11)	67(6)
C(24)	-1385(15)	1193(12)	-11897(10)	64(7)
C(25)	-1010(27)	1926(15)	-11854(19)	67(10)
C(26)	-1188(12)	2411(11)	-11182(10)	58(6)
N	4112(13)	-179(10)	3444(10)	80(4)
0	2579(12)	515(10)	3071(10)	104(5)
C(1)	3058(20)	-111(15)	3249(15)	98(7)
C(2)	4836(21)	471(17)	3434(19)	123(9)
C(3)	4643 (26)	-923(17)	3645(22)	143(11)

N,N'-Bis[diphenyl(trimethylsilylimino)phosphoranlyiden]-S,S-dimethylsulfodiimid (2): Zu 9.2 g (20 mmol) Me₂S(NPPh₂)₂ (1) in 80 ml Xylol werden bei 80°C 2.3 g (20 mmol) Me₃SiN₃ in 20 ml Xylol getropft. Man läßt 5 h rühren und erhöht die Temp. dann für weitere 3 h auf 110°C. Das Lösungsmittel wird i. Vak. destilliert, das zurückbleibende Öl mit 100 ml Et₂O aufgenommen und die Lösung 12 h gerührt. Es wird vom Unlöslichen dekantiert. Nach Entfernen des Lösungsmittels i. Vak. wird aus Hexan umkristalliisert. Ausb. 12.0 g (95%), Schmp. 127°C. – IR (Nujol/KBr): 3070 cm⁻¹ st, 1445 sst, 1345 sst, 1310 sst, 1255 sst, 1240 sst br, 1200 sst, 1190 sst, 1175 sst, 1150 sst, 1110 sst, 865 sst, 825 sst, 780 st, 750 sst, 715 sst, 695 sst, 570 st, 545 sst, 530 sst, 520 st. – MS (FI): m/z (%) = 634 (M, 100%). – ¹H-NMR (CDCl₃): δ = 0.0 (d, SiCH₃, ⁴J_{H,P} = 0.42 Hz), 3.4 (t, SCH₃, ⁴J_{H,P} = 0.75 Hz), 7.2–7.9 (m, C₆H₅). – ³¹P-NMR (CDCl₃): δ = -3.9 (s).

1,1,1,1-Tetrafluor-5,5-dimethyl-3,3,7,7-tetraphenyl-1λ⁶,5λ⁶,3λ⁵, 7λ⁵,2,4,6,8-wolframathiadiphosphatetrazocin (**3a**): Zu 4.0 g (6.3 mmol) **2** in 100 ml CHCl₃ werden bei – 189 °C 1.87 g (6.28 mmol) WF₆ kondensiert. Man läßt langsam auf Raumtemp. kommen. Nach 36 h erhitzt man 3 h unter Rückfluß. Abfiltrieren, Waschen mit wenig CHCl₃ und Trocknen i. Vak. liefert analysenreines **3a**. Ausb. 1.3 g (28%), Schmp. 204 °C (Zers.). – IR (Nujol/KBr): 3060 cm⁻¹ st, 1440 sst, 1225 sst br, 1190 sst br, 1155 sst br, 1125 sst, 1110 sst, 1030 st, 1000 st, 785 st, 750 st, 730 sst, 690 sst, 670 sst, 665 sst, 620 sst br, 610 sst, 550 sst, 510 sst. – ¹⁹F-NMR (DMF, C₆D₆): δ = –9.0 (t, WF, ²J_{F,F} = 70.5 Hz), –26.5 (t, WF, ¹⁸³W-Satelliten: ¹J_{F,W} = 48 Hz). – ³¹P-NMR (DMF, C₆D₆): δ = 18.8 (m, ³J_{P,F} = 2.6–3.1 Hz, ¹⁸³W-Satelliten: ²J_{P,W} = 99.6 Hz).

1,1,1,1-Tetrachlor-5,5-dimethyl-3,3,7,7-tetraphenyl- $1\lambda^{6}$, $5\lambda^{6}$, $3\lambda^{5}$, $7\lambda^{5}$,2,4,6,8-wolframathiadiphosphatetrazocin (**3b**): 4.0 g (6.3 mmol) **2** in 40 ml CHCl₃ werden innerhalb 1 h bei Raumtemp. zu 2.5 g (6.3 mmol) WCl₆ in 100 ml CHCl₃ getropft. Man erhitzt 10 h unter Rückfluß, filtriert den entstandenen gelben Feststoff ab, wäscht mit wenig CHCl₃ und trocknet i. Vak.; Ausb. 4.3 g (83%), Schmp. 175 °C (Zers.). – IR (Nujol/KBr): 3060 cm⁻¹ st, 1440 sst, 1210 sst br, 1180 sst br, 1120 sst, 1055 st, 1040 st, 1000 st, 750 st, 730 sst, 705 st, 690 sst, 550 sst. – ³¹P-NMR (CH₃CN, C₆D₆): $\delta = 23.3$ (s, ¹⁸³W-Satelliten: ²J_{P,W} = 86 Hz).

 $\begin{array}{cccc} C_{26}H_{26}Cl_4N_4P_2SW \ (814.2) & \mbox{Ber. C} 38.6 \ H \ 3.2 \ Cl \ 17.4 \ W \ 22.6 \\ & \mbox{Gef. C} 38.5 \ H \ 3.2 \ Cl \ 17.3 \ W \ 22.4 \end{array}$

Tab. 3. Bindungsabstände (pm) und -winkel (°) von $3a \cdot (CH_3)_2NCHO$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	W-F(1) 189.	.4(9)	W-F(1')	190.0(9)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	W-F(2) 196.	. 6 (8)	W-F(2')	193.4(11)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	W-N 175.	.6(13)	W-N'	183.3(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P-N 165.	.9(14)	P-N(1)	161.6(11)
$\begin{array}{ccccccc} N(1)-S & 155.4(10) & S-N(1') & 153.9(12) \\ S-C & 178.4(19) & S-C' & 175.9(15) \\ P'-N' & 155.4(10) & P'-N(1') & 163.9(13) \\ P'-C(11') & 181.5(14) & P'-C(21') & 179.6(15) \\ N-C(1) & 128.9(29) & N-C(2) & 144.4(33) \\ N-C(3) & 144.9(33) & O-C(1) & 123.8(30) \\ \hline \\ F(1)-W-F(2) & 83.6(4) & F(1)-W-F(2') & 86.6(5) \\ F(1')-W-F(2') & 82.5(5) & F(2)-W-F(2') & 83.0(4) \\ F(1)-W-F(2') & 82.5(5) & F(2)-W-F(2') & 83.0(4) \\ F(1)-W-N & 95.8(5) & F(1')-W-N & 93.7(5) \\ F(2)-W-N & 90.7(4) & F(2')-W-N & 173.0(4) \\ F(1)-W-N' & 95.8(4) & F(1')-W-N' & 96.1(5) \\ F(2)-W-N' & 173.6(4) & F(2')-W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N-W-N' & 95.8(6) & N(1)-S-N(1') & 109.5(6) \\ N(1)-P-C(11) & 102.8(7) & N-P-C(21) & 109.4(7) \\ P-N(1)-S & 128.2(8) & N(1)-S-N(1') & 120.2(6) \\ N(1)-S-C & 103.1(6) & N(1')-S-C & 103.4(8) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(11') & 104.0(6) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(11') & 104.0(6) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(21') & 118.1(13) \\ P'-C(21')-C(26') & 120.9(10) & P'-C(21')-C(22') & 118.5(7) \\ S-N(1')-P' & 126.8(7) & P'-C(11')-C(12') & 118.1(13) \\ P'-C(11)-C(16') & 121.2(11) & P-C(21) & 107.9(13) \\ P-C(11)-C(16) & 121.2(11) & P-C(21) & 107.9(13) \\ P-C(11)-C(26) & 122.0(12) & C(1)-N-C(2) & 122.4(20) \\ C(1)-N-C(3) & 121.8(21) & C(2)-N-C(3) & 115.7(19) \\ \end{array}$	P-C(11) 179.	2(14)	P-C(21)	180.7(15)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-S 155.	4(10)	S-N(1')	153.9(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S-C 178.	4(19)	s-c'	175.9(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P'-N' 155.	4(10)	P'-N(1')	163.9(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P'-C(11') 181.	5(14)	P'-C(21')	179.6(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N-C(1) 128.	9 (29)	N-C(2)	144.4(33)
$\begin{array}{ccccccc} F(1)-W-F(1') & 163.9(4) & F(1)-W-F(2) & 83.3(4) \\ F(1')-W-F(2) & 83.6(4) & F(1)-W-F(2') & 86.6(5) \\ F(1')-W-F(2') & 82.5(5) & F(2)-W-F(2') & 83.0(4) \\ F(1)-W-N & 95.8(5) & F(1')-W-N & 93.7(5) \\ F(2)-W-N & 90.7(4) & F(2')-W-N & 173.0(4) \\ F(1)-W-N' & 95.8(4) & F(1')-W-N' & 96.1(5) \\ F(2)-W-N' & 173.6(4) & F(2')-W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N(1)-P-C(11) & 102.8(7) & N-P-C(21) & 109.4(7) \\ P-N(1)-S & 128.2(8) & N(1)-S-N(1') & 120.2(6) \\ N(1)-S-C & 112.8(7) & N(1')-S-C & 113.8(7) \\ C-S-C' & 103.1(6) & N(1')-F'-C(11') & 104.0(6) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(21') & 110.0(6) \\ C(11')-P'-C(21') & 108.6(6) & N(1')-P'-C(11') & 104.0(6) \\ N'-P'-C(11')-C(16') & 119.5(10) & P'-C(21')-C(22') & 118.1(13) \\ P'-C(11')-C(26') & 120.9(10) & P-C(11')-C(12') & 118.5(7) \\ S-N(1')-P'-C(21) & 102.5(8) & D'-C(21')-C(22') & 118.5(10) \\ P'-C(21')-C(26') & 120.9(10) & P'-C(21')-C(22') & 118.5(10) \\ P'-C(21)-C(26) & 121.0(12) & C(1)-N-C(2) & 122.4(20) \\ C(1)-N-C(3) & 121.8(21) & C(2)-N-C(3) & 115.7(19) \\ N-C(1)-O & 123.4(23) \\ \end{array}$	N-C(3) 144.	9 (33)	0-C(1)	123.8(30)
$\begin{array}{ccccccc} F(1)-W-F(1') & 163.9(4) & F(1)-W-F(2) & 83.3(4) \\ F(1)-W-F(2) & 83.6(4) & F(1)-W-F(2') & 86.6(5) \\ F(1')-W-F(2') & 82.5(5) & F(2)-W-F(2') & 83.0(4) \\ F(1)-W-N & 95.8(5) & F(1')-W-N & 93.7(5) \\ F(2)-W-N & 90.7(4) & F(2')-W-N & 173.0(4) \\ F(1)-W-N' & 95.8(4) & F(1')-W-N' & 96.1(5) \\ F(2)-W-N' & 173.6(4) & F(2')-W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N-P-N(1) & 116.1(6) & N-P-C(11) & 109.5(6) \\ N(1)-P-C(11) & 102.8(7) & N-P-C(21) & 107.3(7) \\ N(1)-P-C(21) & 111.6(6) & C(11)-P-C(21) & 109.4(7) \\ P-N(1)-S & 128.2(8) & N(1)-S-N(1') & 120.2(6) \\ N(1)-S-C & 112.8(7) & N(1')-S-C & 103.4(8) \\ N(1)-S-C' & 103.1(6) & N(1')-S-C' & 113.8(7) \\ C-S-C' & 102.5(8) & N'-P'-N(1') & 114.4(6) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(21') & 100.0(6) \\ C(11')-P'-C(21') & 108.6(6) & N(1')-P'-C(12') & 118.1(13) \\ P'-C(11')-C(16') & 119.5(10) & P'-C(11')-C(12') & 118.5(7) \\ S-N(1')-P'-C(21') & 100.6(6) & N(1')-P'-C(21') & 118.5(7) \\ S-N(1')-P'-C(21') & 108.8(7) & P'-C(11')-C(12') & 118.5(10) \\ P'-C(11')-C(16') & 121.2(11) & P-C(21)-C(22') & 118.5(10) \\ P'-C(11)-C(16) & 121.2(11) & P-C(21)-C(22) & 119.1(12) \\ P-C(11)-C(26) & 122.0(12) & C(1)-N-C(2) & 122.4(20) \\ C(1)-N-C(3) & 121.8(21) & C(2)-N-C(3) & 115.7(19) \\ N-C(1)-O & 123.4(23) \\ \end{array}$				
$\begin{array}{cccccc} F(1') - W - F(2') & 83.6(4) & F(1) - W - F(2') & 83.0(4) \\ F(1') - W - F(2') & 82.5(5) & F(2) - W - F(2') & 83.0(4) \\ F(1) - W - N & 95.8(5) & F(1') - W - N & 93.7(5) \\ F(2) - W - N & 90.7(4) & F(2') - W - N & 173.0(4) \\ F(1) - W - N' & 95.8(4) & F(1') - W - N' & 96.1(5) \\ F(2) - W - N' & 95.8(4) & F(1') - W - N' & 90.6(4) \\ N - W - N' & 95.8(5) & W - N - P & 154.9(9) \\ N - W - N' & 95.8(5) & W - N - P & 154.9(9) \\ N - W - N' & 95.8(5) & W - N - P & 154.9(9) \\ N - W - N' & 95.8(5) & W - N - P & 154.9(9) \\ N - W - N' & 95.8(5) & W - N - P & (1) & 109.5(6) \\ N(1) - P - C(11) & 102.8(7) & N - P - C(21) & 109.4(7) \\ P - N(1) - S & 128.2(8) & N(1) - S - N(1') & 120.2(6) \\ N(1) - S - C' & 103.1(6) & N(1') - S - C' & 103.4(8) \\ N' - P' - C(11') & 109.1(6) & N(1') - S - C' & 113.8(7) \\ C - S - C' & 102.5(8) & N' - P' - N(1') & 114.4(6) \\ N' - P' - C(11') & 109.1(6) & N(1') - P' - C(11') & 104.0(6) \\ N' - P' - C(21') & 108.6(6) & N(1') - P' - C(11') & 104.0(6) \\ C(11') - P' - C(21') & 100.6(6) & W - N' - P' & 158.5(7) \\ S - N(1') - P' & 126.8(7) & P' - C(11') - C(12') & 118.1(13) \\ P' - C(11) - C(16') & 119.5(10) & P' - C(21') - C(22') & 118.5(10) \\ P' - C(21') - C(26') & 120.9(10) & P' - C(21) - C(22') & 118.5(10) \\ P' - C(11) - C(16) & 121.2(11) & P - C(21) - C(22) & 119.1(12) \\ P - C(11) - C(26) & 121.0(122) & C(1) - N - C(2) & 122.4(20) \\ C(1) - N - C(3) & 121.8(21) & C(2) - N - C(3) & 115.7(19) \\ N - C(1) - 0 & 123.4(23) \\ \end{array}$	F(1)-W-F(1')	163.9(4)	F(1) - W - F(2)	83.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(1')-W-F(2)	83.6(4)	F(1)-W-F(2')	86.6(5)
$\begin{array}{cccccccc} F(1)-W-N & 95.8(5) & F(1')-W-N & 93.7(5) \\ F(2)-W-N & 90.7(4) & F(2')-W-N & 173.0(4) \\ F(1)-W-N' & 95.8(4) & F(1')-W-N' & 96.1(5) \\ F(2)-W-N' & 173.6(4) & F(2')-W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-P & 154.9(9) \\ N-P-N(1) & 116.1(6) & N-P-C(11) & 109.5(6) \\ N(1)-P-C(21) & 102.8(7) & N-P-C(21) & 107.3(7) \\ N(1)-P-C(21) & 111.6(6) & C(11)-P-C(21) & 109.4(7) \\ P-N(1)-S & 128.2(8) & N(1)-S-N(1') & 120.2(6) \\ N(1)-S-C & 112.8(7) & N(1')-S-C & 103.4(8) \\ N(1)-S-C' & 103.1(6) & N(1')-S-C' & 113.8(7) \\ C-S-C' & 102.5(8) & N'-P'-N(1') & 114.4(6) \\ N'-P'-C(21') & 108.6(6) & N(1')-P'-C(21') & 110.0(6) \\ C(11')-P'-C(21') & 108.6(6) & W-N'-P' & 158.5(7) \\ S-N(1')-P'-C(21') & 110.6(6) & W-N'-P' & 158.5(7) \\ S-N(1')-P'-C(26') & 120.9(10) & P-C(11')-C(12') & 118.1(13) \\ P'-C(21)-C(26) & 121.0(12) & C(1)-N-C(2) & 122.4(20) \\ C(1)-N-C(3) & 121.8(21) & C(2)-N-C(3) & 115.7(19) \\ N-C(1)-O & 123.4(23) \\ \end{array}$	F(1')-W-F(2')	82.5(5)	F(2)-W-F(2')	83.0(4)
$\begin{array}{ccccccc} F(2) - W-N & 90.7(4) & F(2') - W-N & 173.0(4) \\ F(1) - W-N' & 95.8(4) & F(1') - W-N' & 96.1(5) \\ F(2) - W-N' & 173.6(4) & F(2') - W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N-P-N(1) & 116.1(6) & N-P-C(11) & 109.5(6) \\ N(1) - P-C(11) & 102.8(7) & N-P-C(21) & 107.3(7) \\ N(1) - P-C(21) & 111.6(6) & C(11) - P-C(21) & 109.4(7) \\ P-N(1) - S & 128.2(8) & N(1) - S-N(1') & 120.2(6) \\ N(1) - S-C & 112.8(7) & N(1') - S-C & 113.8(7) \\ C-S-C' & 103.1(6) & N(1') - S-C' & 113.8(7) \\ C-S-C' & 102.5(8) & N' - P' - N(1') & 114.4(6) \\ N' - P' - C(21') & 108.6(6) & N(1') - P' - C(21') & 100.0(6) \\ C(11') - P' - C(21') & 108.6(6) & N(1') - P' - C(11') & 100.0(6) \\ C(11') - P' - C(21') & 105.6(7) & P' - C(11') - C(12') & 118.1(13) \\ P' - C(11') - C(16') & 119.5(10) & P' - C(21') - C(22') & 118.5(7) \\ P' - C(11) - C(16') & 121.2(11) & P - C(21) - C(22') & 118.5(10) \\ P' - C(21) - C(26') & 120.9(100) & P' - C(11') - C(12') & 117.9(13) \\ P - C(11) - C(16) & 121.2(11) & P - C(21) - C(22) & 119.1(12) \\ P - C(21) - C(26) & 121.0(12) & C(1) - N - C(2) & 122.4(20) \\ C(1) - N - C(3) & 121.8(21) & C(2) - N - C(3) & 115.7(19) \\ N - C(1) - O & 123.4(23) \\ \end{array}$	F(1)-W-N	95.8(5)	F(1')-W-N	93.7(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(2)-W-N	90.7(4)	F(2')-W-N	173.0(4)
$\begin{array}{cccccc} F(2)-W-N' & 173.6(4) & F(2')-W-N' & 90.6(4) \\ N-W-N' & 95.8(5) & W-N-P & 154.9(9) \\ N-P-N(1) & 116.1(6) & N-P-C(11) & 109.5(6) \\ N(1)-P-C(11) & 102.8(7) & N-P-C(21) & 107.3(7) \\ N(1)-P-C(21) & 111.6(6) & C(11)-P-C(21) & 109.4(7) \\ P-N(1)-S & 128.2(8) & N(1)-S-N(1') & 120.2(6) \\ N(1)-S-C & 112.8(7) & N(1')-S-C & 103.4(8) \\ N(1)-S-C' & 103.1(6) & N(1')-S-C' & 113.8(7) \\ C-S-C' & 102.5(8) & N'-P'-N(1') & 114.4(6) \\ N'-P'-C(11') & 109.1(6) & N(1')-P'-C(11') & 104.0(6) \\ C(11')-P'-C(21') & 108.6(6) & N(1')-P'-C(21') & 110.0(6) \\ C(11')-P'-C(21') & 106.6(6) & W-N'-P' & 158.5(7) \\ S-N(1')-P' & 126.8(7) & P'-C(11')-C(12') & 118.1(13) \\ P'-C(11')-C(16') & 119.5(10) & P'-C(21')-C(22') & 118.5(10) \\ P'-C(21')-C(26') & 120.9(10) & P-C(11)-C(12) & 117.9(13) \\ P-C(11)-C(16) & 121.2(11) & P-C(21)-C(22) & 119.1(12) \\ P-C(21)-C(26) & 121.0(12) & C(1)-N-C(2) & 122.4(20) \\ C(1)-N-C(3) & 121.8(21) & C(2)-N-C(3) & 115.7(19) \\ N-C(1)-O & 123.4(23) \\ \end{array}$	F(1)-W-N'	95.8(4)	F(1')-W-N'	96.1(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(2)-W-N'	173.6(4)	F(2')-W-N'	90.6(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N-W-N'	95.8(5)	W-N-P	154.9(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N-P-N(1)	116.1(6)	N-P-C(11)	109.5(6)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-P-C(11)	102.8(7)	N-P-C(21)	107.3(7)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(1)-P-C(21)	111.6(6)	C(11)-P-C(21)	109.4(7)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	P-N(1)-S	128.2(8)	N(1)-S-N(1')	120.2(6)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(1)-S-C	112.8(7)	N(1')-S-C	103.4(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-S-C'	103.1(6)	N(1')-S-C'	113.8(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	c-s-c'	102.5(8)	N'-P'-N(1')	114.4(6)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N'-P'-C(11')	109.1(6)	N(1')-P'-C(11')	104.0(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N'-P'-C(21')	108.6(6)	N(1')-P'-C(21')	110.0(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(11')-P'-C(21')	110.6(6)	W-N'-P'	158.5(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S-N(1')-P'	126.8(7)	P'-C(11')-C(12')	118.1(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P'-C(11')-C(16')	119.5(10)	P'-C(21')-C(22')	118.5(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P'-C(21')-C(26')	120.9(10)	P-C(11)-C(12)	117.9(13)
P-C(21)-C(26) 121.0(12) C(1)-N-C(2) 122.4(20) C(1)-N-C(3) 121.8(21) C(2)-N-C(3) 115.7(19) N-C(1)-O 123.4(23)	P-C(11)-C(16)	121.2(11)	P-C(21)-C(22)	119.1(12)
C(1)-N-C(3) 121.8(21) C(2)-N-C(3) 115.7(19) N-C(1)-O 123.4(23)	P-C(21)-C(26)	121.0(12)	C(1)-N-C(2)	122.4(20)
N-C(1)-O 123.4(23)	C(1)-N-C(3)	121.8(21)	C(2)-N-C(3)	115.7(19)
	N-C(1)-O	123.4(23)		

Wolframheterocyclen mit Phosphor, Schwefel und Stickstoff als Ringbausteine

Kristallstrukturanalyse von 3a (CH₃)₂NCHO¹⁰. Geeignete Einkristalle erhält man durch Umkristallisieren von 3a aus Dimethylformamid. Eine Zusammenfassung der Datensammlungsverfahren und der Kristalldaten ist in Tab. 1 angegeben. Atomkoordinaten, Bindungsabstände und -winkel werden in Tab. 2 und 3 mitgeteilt¹⁰). Die Struktur wurde nach der Schweratommethode (SHELXS-86) gelöst und mit allen Nichtwasserstoffatomen anisotrop verfeinert (SHELX-76). Für die Wasserstoffatome wurde ein Reitermodell verwendet.

CAS-Registry-Nummern

1: 29952-78-1 / 2: 116927-87-8 / 3a: 116927-90-3 / 3a · (CH₃)₂-NCHO: 116927-91-4 / 3b: 116927-89-0

G. Jones, W. Pinkert, M. Noltemeyer, H. W. Roesky, G. M.

- Sheldrick, Inorg. Chim. Acta 97 (1985) L 7.
 ³⁾ H. W. Roesky, K. V. Katti, U. Seseke, M. Witt, E. Egert, R. Herbst, G. M. Sheldrick, Angew. Chem. 98 (1986) 477; Angew. Chem. Int. Ed. Engl. 25 (1986) 477.
- ⁴⁾ H. W. Roesky, K. V. Katti, U. Seseke, H. G. Schmidt, E. Egert, R. Herbst, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1987, 847; K. V. Katti, H. W. Roesky, M. Rietzel, Inorg. Chem. 26 (1987) 4032
- ⁵⁾ H. Plenio, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, Angew. Chem. 100 (1988) 1377; Angew. Chem. Int. Ed. Engl. 27 (1988) 1330.
- ⁶⁾ C. G. Marcellus, R. T. Oakley, W. T. Pennington, A. W. Cordes, Organometallics 5 (1986) 1395.
- M. Witt, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, Angew. Chem. 100 (1988) 852; Angew. Chem. Int. Ed. Engl. 27 (1988) 850.
- ⁸⁾ W. Wolfsberger, H. Försterling, *Chem. Ber.* 111 (1978) 958.
 ⁹⁾ H. W. Roesky, J. Sundermeyer, J. Schimkowiak, P. G. Jones, M. Noltemeyer, T. Schroeder, G. M. Sheldrick, *Z. Naturforsch., Teil* D. (1995) 726 B, 40 (1985) 736.
- ¹⁰⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53189, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[218/88]

¹⁾ H. W. Roesky, J. Anhaus, H. G. Schmidt, G. M. Sheldrick, M. Noltemeyer, J. Chem. Soc., Dalton Trans. 1983, 1207; J. Hanich, M. Krestel, U. Müller, K. Dehnicke, D. Rehder, Z. Naturforsch. Teil B, 39 (1984) 1680.

 ²⁾ J. Anhaus, Z. A. Siddigi, J. Schimkowiak, H. W. Roesky, H. Luecken, Z. Naturforsch., Teil B, **39** (1984) 1722; J. Anhaus, P.